
An end-to-end cloud migration
by Amlgo Labs
Background:
Our client is one of the top financial services provider firms

from Europe having 100 + applications to support day-to-

day banking businesses around the globe. The

team approached Amlgo Labs for helping them architect

and design the migration strategy for one of the

applications called Maestro from on-premises to AWS

cloud. This includes migration of – Applications,

Databases, Security, Permissions, etc. with minimum

service disruption and migration as efficiently as

possible.

 11 January 2023 amlgo Case-Study� � �

Maestro Application On-
Premise to AWS

https://amlgolabs.com/category/case-study/

Step-3: Migration

Proposed Solution:
Amlgo team’s predefined approach has been key to the

successful migrations of many projects and played a key

role in designing and defining the end-to-end process of

migration. The Approach –

Step-1: Assessment

Step-2: Change Configuration
During this step of cloud migration, the Maestro

application undergoes architectural and design

changes. This step is the longest step as it includes many

designing and re-platforming sessions at a granular

level until the application achieves the desired state.

These changes can include implementation change,

code change, architectural change, underlying

infrastructure change, and so on.

The AWS Migration Readiness Assessment: a

process of gaining insights into how far along we

are in the cloud journey, understanding current

cloud readiness strengths and weaknesses, and

then building an action plan to close gaps

identified.

AWS Cloud Adoption Framework (CAF): a guide to

get a holistic view of the transformation initiative

that is required for an effective move to the cloud.

The final step involved testing the sustainability of the

Maestro application, so this is essentially a validation

step where we test the application to ensure that they

work seamlessly. Here we compare the performance of

cloud-migrated applications against their on-premise

Post that actual migration of the application and

deployment happens on Amazon services like EC2/EBS

along with allocating load balancers to them and

maintaining their scalability. Since the application is

containerized, we also need to make an entry in ECR and

deploy on AWS Fargate.

Once the implementation is ready, we first need to

migrate the static files, dependencies, and database

tables to the respective AWS services. This includes steps

like migrating on-premise databases (MySQL, Oracle,

Sybase) to Amazon RDS/Aurora, migrating static files

and dependencies to Amazon S3.

This is a time-consuming process as legacy applications

might have a huge amount of data in their databases.

Once the cloud migration is done, a comparison check is

required to validate if the data between the on-premise

database and Amazon RDS match.

Step-4: Test and Production

Cloud capabilities can improve disaster recovery

planning. As we wanted to ensure that the client should

be better prepared to quickly recover customer data in

the event of a disaster. AWS’ reliable, redundant, and

robust data backups help make this possible.

version to determine if the cloud migration was

successful, few other steps were processed during this –

Agile development practices (DevOps, test

automation, CI/CD, observability).

Infrastructure automation (elastic infrastructure,

containers, AI/ML).

Future Extension Planning to the Cloud-native

architectural patterns (stateless, microservices,

serverless, data lakes).

Windows modernization, database modernization,

and product-based operating models.

Amlgo team successfully transforms the Maestro

application from on-premise to AWS with an exceptional

scalable design and enhanced security

implementations.

Ensuring data security in the cloud may require extra

steps. Cloud security challenges may require extra focus

in your cloud migration effort. During this transformation,

we created the additional security layers their business

required.

As we always emphasize that cloud migration doesn’t

have to happen all at once. You can migrate services in

phases or waves grouped by service or user. A phased

cutover approach allows for rollback points if things don’t

go according to plan, reducing migration risk.

Conclusion:

