AMLGO LABS

Ensuring Scalability, Governance & Innovation

Parts Inspection using Computer Vision & AI by Comparing 3D Images with Actual Part Image

Approach 1

Mobile App-Based Part Inspection

Mobile App-Based Part Inspection

Why This Matters:

- Reduces downtime by detecting defects early.
- Improves quality and ensures consistency with CAD specifications.
- Empowers on-site teams to make quick decisions without specialized equipment.

Problem Statement

- MSIL needs a quick, onthe-spot way to compare actual parts against 3D CAD models or reference images.
- Manual inspection can be error-prone and timeconsuming.

Proposed Solution

- Loads a 3D CAD model or reference JPG/PNG.
- Captures an image of the produced part using the device camera.
- Analyzes deviations, defects, or missing features in real time.

Target Users

Shop-floor operators, quality inspectors, and production managers who need immediate feedback on part quality.

How the Mobile App Works

1 CAD/Image Input:

 The user can load the 3D model or a reference image into the app.

2 Camera Integration

• The app uses the device's camera to capture the actual product.

3 Comparison Algorithm

- Feature detection and image alignment.
- **Deviation mapping** to highlight any differences.

4 Reporting & Feedback

- Displays **results** (e.g., pass/fail or defect locations).
- Optionally **stores data** in a central server for further analysis.

Pros & Cons + Final Thoughts

Pros

- Immediate Feedback: Operators get real-time results on the shop floor.
- Low Infrastructure Cost: Only a mobile device is needed, no expensive scanning equipment.
- **User-Friendly:** Minimal training required, familiar **smartphone interface**.
- Scalable & Portable: Easily deploy to multiple facilities or lines.

Cons

- Lighting & Environment: Inconsistent lighting or background can affect accuracy.
- Limited 3D Depth Analysis: 2D images may not capture complex 3D defects.
- **Device Constraints:** Performance depends on **mobile hardware**, high-end devices may be required for **complex algorithms**.
- Accuracy Threshold: May need calibration or additional references for precise dimensional checks.

Summary

- A Mobile App-Based Comparison system is an accessible and costeffective approach to quality control.
- It is best suited for quick checks and simple geometry comparisons.
- For **highly complex parts** or **stringent tolerances**, consider **3D scanning** or more advanced inspection solutions.
- This solution can be **integrated** with other quality processes, offering a **first line of defense** against defects.

Additional Notes for the Client

- Integration Options: Can integrate with existing ERP/MES systems for automated record-keeping.
- **Customization:** The algorithm can be **tailored** to specific part features or tolerances.
- Future Upgrades: Potential to add AR overlays or machine learning for more sophisticated defect detection.

Approach 2

AI-Powered Industrial Camera Quality Control

AI-Powered Industrial Camera Quality Control

Problem Statement:

- Ensuring manufactured parts match their 3D CAD designs is critical.
- Manual inspections are often slow and prone to human error.

Proposed Solution

- Deploy high-resolution industrial cameras at key quality checkpoints.
- Automatically capture images of produced parts and compare them with the CAD model.
- Operate in a fully automated quality control environment with minimal human intervention.

Benefits

- Streamlined inspections with automated detection of deviations.
- Consistent and repeatable quality checks across production lines.
- Reduced human error and increased production throughput.

Target Users

Manufacturing plants seeking improved automation, consistency, and efficiency in quality control.

AI-Powered Industrial Camera Quality Control

1 Industrial Cameras

 Capture high-quality images at designated checkpoints.

2 Image Capture Module

 Ensures images are taken at the right moment with consistent settings.

3 Comparison Engine

 Uses AI/ML algorithms to align images with the CAD model, detecting defects.

4 Data Hub

 Aggregates inspection data, providing analytics and integration with existing systems.

Pros & Cons + Final Thoughts

Pros

- **High Accuracy:** Industrial cameras provide high-resolution images for detailed analysis.
- **Automation:** Fully automated process minimizes human intervention.
- Consistency: Standardized inspections lead to repeatable and reliable quality control.
- **Scalability:** Easily integrated across multiple production lines.

Cons

- Initial Setup Costs: Industrial cameras and installation can be costly.
- **Maintenance:** Requires periodic calibration and maintenance of cameras.
- Integration Complexity: May require integration with existing manufacturing systems.
- Environment Sensitivity: Variations in lighting or environmental factors can affect image quality if not properly controlled.

Summary

- The AI-Powered Industrial Camera Setup is ideal for high-volume, automated quality control.
- It delivers high accuracy and consistency, making it suitable for complex manufacturing environments.
- While upfront investment and integration may be challenging, long-term benefits include reduced errors and improved production efficiency.